Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Environ Monit Assess ; 196(5): 466, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647712

ABSTRACT

Utilizing monoalgal species for wastewater treatment is facing tremendous challenges owing to changing wastewater complexity in terms of physico-chemical characteristic, nutrient and metal concentration. The environmental conditions are also fluctuating therefore, the formation of robust system is of utmost importance for concomitant sustainable wastewater treatment and bioenergy production. In the present study, the tolerance and adaptability potential of algal consortia-1 (Chlorococcum humicola and Tetradesmus sp.) and consortia-2 (Chlorococcum humicola, Scenedesmus vacuolatus and Tetradesmus sp.) treated with municipal wastewater were examined under natural environmental conditions. The results exhibited that consortia-2 was more competent in recovering nitrate-nitrogen (82.92%), phosphorus (70.47%), and heavy metals (31-73.70%) from municipal wastewater (100%) than consortia-1. The results further depicted that total chlorophyll, carbohydrate, and protein content decreased significantly in wastewater-treated consortia-1 as compared to consortia-2. However, lipid content was increased by 4.01 and 1.17 folds in algal consortia-1 and consortia-2 compared to their respective controls. Moreover, absorption peak at 1740.6 cm-1 reflected higher biofuel-producing potential of consortia-1 as compared to consortia-2 as confirmed through FTIR spectroscopy. The results also revealed that consortia-2 showed the highest photosynthetic performance which was evident from the increment in the active photosystem-II reaction center (1.724 ± 0.068), quantum efficiency (0.633 ± 0.038), and performance index (3.752 ± 0.356). Further, a significant increase in photosynthetic parameters was observed in selected consortia at lag phase, while a noteworthy decline was observed at exponential and stationary phases in consortia-1 than consortia-2. The results also showed the maximum enhancement in ascorbic acid (2.43 folds), proline (3.34 folds), and cysteine (1.29 folds) in consortia-2, while SOD (1.75 folds), catalase (2.64 folds), and GR (1.19 folds) activity in consortia-1. Therefore, it can be concluded that due to remarkable flexibility and photosynthetic performance, consortia-2 could serve as a potential candidate for sustainable nutrient resource recovery and wastewater treatment, while consortia-1 for bio-fuel production in a natural environment. Thus, formation of algal consortia as the robust biosystem tolerates diverse environmental fluctuations together with wastewater complexity and ultimately can serve appropriate approach for environmental-friendly wastewater treatment and bioenergy production.


Subject(s)
Biofuels , Photosynthesis , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Antioxidants/metabolism , Water Pollutants, Chemical/analysis , Phosphorus/metabolism , Microalgae/physiology , Metals, Heavy/analysis , Scenedesmus/metabolism , Scenedesmus/physiology , Nitrogen/metabolism , Biodegradation, Environmental
2.
Mol Ecol ; 32(23): 6631-6643, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35876211

ABSTRACT

The gut microbiome is one of the most important sites of host-microbe interactions, however, mechanisms governing the responses of host-associated microbes to changing environmental conditions are poorly understood. To address this, we investigated individual and combined effects of dietary changes and increase in salinity (from freshwater to salinity 3) or antibiotic concentration on the gastrointestinal bacterial community of the aquatic snail Ampullaceana balthica. In parallel, the energy reserves of the host were quantified. A change of natural food source to biofilm forming green algae Scenedesmus obliquus as well as the combined treatment of salinity and S. obliquus decreased the richness and changed the composition of the A. balthica gastrointestinal bacterial community. In these treatments Pseudomonas became the dominant bacterium. However, energy reserves of the host were higher in these treatments compared to the reference aquaria specimens and the combined treatment of antibiotics with S. obliquus. The presence of antibiotics inhibited the dominance of Pseudomonas and resulted in lower energy reserves despite S. obliquus feeding. Therefore the host seems to be able to adapt and replace its bacterial community composition to respond to mild changes in salinity and food source. Antibiotics in the water can disturb this self-regulating mechanism. Our study underlines the ability of aquatic macroinvertebrates to respond to sudden changes in food source and mild shifts in salinity. Moreover, it emphasizes the strong impact of the food source on the gastrointestinal microbiome and the importance of generalists during disturbance.


Subject(s)
Gastrointestinal Microbiome , Scenedesmus , Animals , Scenedesmus/physiology , Anti-Bacterial Agents/pharmacology , Invertebrates , Diet
3.
Harmful Algae ; 117: 102293, 2022 08.
Article in English | MEDLINE | ID: mdl-35944955

ABSTRACT

In eutrophic freshwaters, Microcystis usually becomes dominant in phytoplankton communities due to the synergistic effects of its special eco-physiological traits and environmental factors. Colonial morphology can protect Microcystis from zooplankton grazing, which indirectly favors Microcystis to outcompete other phytoplankton, although the colonial form is not conducive to the absorption of nutrients. Moreover, unicellular Microcystis usually has competitive advantages over other phytoplankton due to its efficient absorption capacity for nutrients and releasing microcystins. However, the consequence of direct competition between toxic colonial Microcystis and green algae without external grazing pressure still remained unknown. In this study, the competition between toxic colonial Microcystis aeruginosa and a common green alga Scenedesmus obliquus was explored. Results showed that: (1) colonial M. aeruginosa had a higher requirement for key macro-nutrient phosphorus than S. obliquus, and thus its population declined and was replaced by S. obliquus eventually; (2) microcystins released by colonial M. aeruginosa inhibited the photosynthetic activity and growth of S. obliquus at early stage of the competition; (3) the photosynthetic potential of colonial M. aeruginosa was stimulated in response to the competitive stress from S. obliquus, although the population of colonial M. aeruginosa declined eventually; (4) microcystin production of colonial M. aeruginosa was enhanced by phosphorus limitation due to S. obliquus competition and was positively related to photosynthetic potential of colonial M. aeruginosa. These results indicated that, in the absence of complex natural environment, colonial Microcystis cannot outcompete Scenedesmus in a pure competition, although microcystins can play a favorable role in the competition, which clarified the opposite role of colonies and microcystins in the competition of colonial Microcystis against other phytoplankton.


Subject(s)
Microcystis , Scenedesmus , Microcystins/pharmacology , Microcystis/physiology , Phosphorus/pharmacology , Phytoplankton , Scenedesmus/physiology
4.
Chemosphere ; 262: 127881, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32795709

ABSTRACT

The recovery of microalgae by means of coagulation-flocculation is efficient, simple and low operating costs. The addition of coagulants makes it possible to destabilize the microalgae surface loads and recover their biomass. Chemical coagulants can contaminate the environment and negatively affect human health. Thus, the exploration of natural coagulants, such as Moringa oleifera and Guazuma ulmifolia, are innovative. Thus, this study aimed to evaluate the efficiency of biomass separation from the microalgae Scenedesmus obliquuos by means of coagulation-flocculation. M. oleifera and G. ulmifolia were used in order to optimize the variables dose, pH and settling time, through a central composite rotational design, which presented recovery efficiencies above 80.0% and 60.0%, respectively. In relation to M. oleifera, optimum regions were obtained for biomass recovery at both pH 4.0 with a dose of 40.0 mg L-1 and pH 9.0 with a dose of 80.0 mg L-1, both in 30 min of settling times. For G. ulmifolia, an optimum dose of 30.0 mg L-1 at pH 4.0 with a 3 min settling time demonstrated that this new coagulant for microalgae recovery has potential for application. Thus, these natural coagulants are promising and can be used in coagulation-flocculation to recover biomass from Scenedesmus obliquuos and, thus, minimize the use of synthetic or metallic products.


Subject(s)
Scenedesmus/physiology , Biomass , Flocculation , Humans , Microalgae , Moringa oleifera
5.
Plant Sci ; 301: 110680, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33218643

ABSTRACT

DNA methylation is a very important epigenetic modification that participates in many biological functions. Although many researches on DNA methylation have been reported in various plant species, few studies have assessed the global DNA methylation pattern in algae. Even more the complex mechanisms by which DNA methylation modulates stress in algae are yet largely unresolved, mainly with respect to heavy metal stress, for which in plants, metal- and species- specific responses were instead evidenced. In this work, we performed a comparative Whole-Genome Bisulfite Sequencing (WGBS) on two strains of the green alga Scenedesmus acutus with different Cr(VI) sensitivity. The pattern of distribution of 5-mC showed significant differences between the two strains concerning both differentially methylated local contexts (CG, CHG and CHH) and Differentially Methylated Regions (DMRs) as well. We also demonstrated that DNA methylation plays an important role in modulating some genes for sulfate uptake/assimilation confirming the involvement of the sulfate pathway in the Cr-tolerance. Our results suggest that DNA methylation may be of particular importance in defining signal specificity associated with Cr-tolerance and in establishing new epigenetic marks which contribute to the adaptation to metal stress and also to transmit the epigenomic traits to the progeny.


Subject(s)
Chromium/toxicity , Epigenesis, Genetic , Scenedesmus/genetics , Sulfates/metabolism , Acclimatization , DNA Methylation , Scenedesmus/physiology , Whole Genome Sequencing
6.
Biomolecules ; 10(11)2020 11 06.
Article in English | MEDLINE | ID: mdl-33171918

ABSTRACT

Carotenoids have strong antioxidant activity as well as therapeutic value. Their production has been induced in algae under stressful culture conditions. However, the extreme culture conditions lead to the Programmed Cell Death (PCD) of algae, which affects their growth and productivity. This study was performed to evaluate the effect of salinity on the physiological and biochemical traits of Scenedesmus sp., thermal freshwater microalgae from Northern Tunisia. It was cultured under different NaCl concentrations ranging from 0 to 60 g/L. Results showed a good growth and high contents of total chlorophyll and carotenoids in Scenedesmus sp. cultured at 10 g/L of NaCl (salt-stressed 10 (Ss10)). The pigment composition of the Ss10 extract was acquired using HPLC-MS, and showed that the carotenoid fraction is particularly rich in xanthophylls. Moreover, the antioxidant (DPPH and FRAP) and enzymatic inhibition (tyrosinase and elastase) activities of the Ss10 extract were higher compared to those of the control culture. In addition, the cytotoxicity test on B16 cells showed that the Ss10 extract was non-toxic for all tested concentrations below 100 µg/mL. It also showed a rich unsaturated fatty acid (FA) composition. Therefore, these findings suggest that Scenedesmus sp. strain cultivated under mild stress salinity could be a source of biomolecules that have potential applications in the nutraceutical and cosmeceutical industries.


Subject(s)
Carotenoids/metabolism , Salt Stress , Scenedesmus/metabolism , Antioxidants/metabolism , Chlorophyll/metabolism , Fatty Acids/metabolism , Scenedesmus/growth & development , Scenedesmus/physiology
7.
Sci Rep ; 10(1): 13984, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32814827

ABSTRACT

Viable microalgae occur in the air. Whether they can survive the stresses such as UV, desiccation and freezing temperatures at high altitudes during long distance dispersal is rarely studied. If yes, what mechanisms confer the tolerance? Four freshwater airborne green microalgae were isolated from Dongsha Atoll in the South China Sea, classified as Scenedesmus sp. DSA1, Coelastrella sp. DSA2, Coelastrella sp. DSA3 and Desmodesmus sp. DSA6 based on their morphologies and ITS sequences. Their survival rates under UV stress were tightly correlated with their cell wall thickness. All the four airborne green microalgae survived the air-dry stress on benchtop followed by - 20 °C freeze-desiccation stress for 4 weeks, but not the two waterborne green microalgae Desmodesmus sp. F5 and Neodesmus sp. UTEX 2219-4 used as controls. Three of the four airborne microalgae survived the lyophilization treatment, excluding Desmodesmus sp. DSA6 and the two waterborne microalgae. The four airborne microalgae produced carotenoids under prolonged stress conditions, which might help detoxify the reactive oxygen species generated under environmental stresses and shield from the high-light stress in the air. Characterization of these airborne microalgae may help answer how the descendants of green algae survived on the land about 450 MYA.


Subject(s)
Air Microbiology , Chlorophyceae/physiology , Microalgae/physiology , Scenedesmus/physiology , Adaptation, Physiological/physiology , Biomass , Carotenoids/metabolism , China , Chlorophyceae/genetics , Chlorophyceae/ultrastructure , DNA, Ribosomal Spacer/genetics , Microalgae/classification , Microalgae/genetics , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Phylogeny , RNA, Ribosomal/genetics , Scenedesmus/genetics , Scenedesmus/ultrastructure , Stress, Physiological/physiology
8.
J Basic Microbiol ; 60(2): 158-172, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31692003

ABSTRACT

The present investigation ascertains the impact of gradient concentrations of sodium nitrate on the physiology and biochemical composition of isolated microalga Scenedesmus rotundus-MG910488. The concentrations of nitrate were selected as 0, 3.5, 7.0, 10.5, 14.0, and 17.6 mM/L in BG11 medium. The lower concentrations of nitrogen were found to be significantly decreasing the cell count and photosynthetic activity in the microalga as well as changing cell morphology. The amount of biomass, its productivity and lipid yield were significantly affected. The highest biomass of 689.15 ± 14.27 mg/L was achieved in the concentration of 17.6 mM/L with the biomass productivity of 38.28 ± 0.78 mg/L. The highest lipid accumulation of 41.46 ± 1.94% dry-cell weight was obtained at a concentration of 3.5 mM/L, whereas the lowest lipid accumulation of 29.22 ± 1.65% at the concentration of 17.6 mM/L sodium nitrate. The fatty acid composition determines the quality of the fuel, so the characterization of fatty acid methyl esters (FAMEs) was performed by GC, and the assessment of methyl esters of fatty acid confirmed the existence of palmitic acid, oleic acid, and linoleic acid, which are essential components suitable for biodiesel production. FTIR confirms the presence of FAME components by estimating the bending and stretching of functional groups.


Subject(s)
Nitrates/pharmacology , Nitrogen/deficiency , Scenedesmus/chemistry , Scenedesmus/physiology , Biofuels , Biomass , Culture Media/chemistry , Esters/analysis , Fatty Acids/biosynthesis , India , Lakes/microbiology , Lipids/analysis , Nitrogen/metabolism , Scenedesmus/drug effects
9.
Microsc Microanal ; 25(4): 998-1003, 2019 08.
Article in English | MEDLINE | ID: mdl-31232262

ABSTRACT

Phototrophic microorganisms are the dominant populations in microbial mats, which play an important role in stabilizing sediments, such as happens in the Ebro Delta. These microorganisms are exposed to low metal concentrations over a long period of time. Distinct methods have been used to evaluate their toxic effect on the preservation of these ecosystems. Nevertheless, most of these techniques are difficult to apply in isolated phototrophs because (i) they usually form consortia with heterotrophic bacteria, (ii) are difficult to obtain in axenic cultures, and (iii) do not grow on solid media.In this study, and for the first time, a combination of fast, non-invasive, and in vivo Confocal Laser Scanning Microscopy (CLSM) techniques were applied in a consortium of Scenedesmus sp. DE2009 to analyze its physiological state and viability under metal stress conditions. Microalga was more resistant to Pb followed by Cr and Cu. However, in multimetal combinations, the presence of Cu negatively affected microalga growth. Additionally, the inhibitory concentration (IC) values were also calculated by CLSM pigment analysis. The result determines a higher degree of toxicity for Cu and Cr in comparison to Pb. The high sensitivity of these CLSM-methods to detect low concentrations allows consideration of Scenedesmus sp. DE2009 as a good bioindicator of metal pollution in natural environments.


Subject(s)
Chromium/toxicity , Copper/toxicity , Lead/toxicity , Microbial Viability/drug effects , Microscopy, Confocal/methods , Scenedesmus/cytology , Scenedesmus/drug effects , Inhibitory Concentration 50 , Scenedesmus/physiology , Water Pollutants, Chemical/toxicity
10.
Int J Mol Sci ; 20(12)2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31238532

ABSTRACT

We have analyzed protein expression in the bleached small vegetative cells of synchronous Scenedesmus vacuolatus to investigate how unicellular algae lived through stress. These cells were subjected to heat treatment (46.5 °C for 1h in dark condition) and then cultured under continuous illumination for 24 h. Flow cytometry analysis of the chlorophyll autofluorescence intensity of S. vacuolatus cells indicated that heat-treated cells were completely bleached within 24 h of light cultivation. Transmission electron microscopy (TEM) images showed that bleached cells maintained thylakoid membrane structure, but with lower contrast. The bleached cells regained green color after 72 h, along with a recovery in contrast, which indicated a return of photosynthetic ability. Two-dimensional gel electrophoresis (2DE) showed that the protein expression patterns were very difference between control and bleached cells. ATP synthase subunits and glutamine synthetase were down-regulated among the many differences, while some of phototransduction, stress response proteins were up-regulated in bleached cells, elucidating bleached cells can undergo changes in their biochemical activity, and activate some stress response proteins to survive the heat stress and then revive. In addition, small heat shock proteins (HSPs), but not HSP40 and HSP70 family proteins, protected the bleaching cells.


Subject(s)
Heat-Shock Proteins/genetics , Hot Temperature , Photobleaching , Scenedesmus/physiology , Scenedesmus/radiation effects , Stress, Physiological , Algal Proteins/genetics , Chromatography, Liquid , Gene Expression Regulation, Plant , Proteome , Proteomics/methods , Scenedesmus/ultrastructure , Tandem Mass Spectrometry
11.
Appl Microbiol Biotechnol ; 103(14): 5907-5916, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31115631

ABSTRACT

Allelopathy by hydrophytes can be utilized to control algal blooms. This study was conducted to investigate the allelopathic effect (inhibition) of Scenedesmus quadricauda on Microcystis flos-aquae. When M. flos-aquae was co-cultured with S. quadricauda, the secretion of high-MW biopolymer by M. flos-aquae was inhibited by S. quadricauda. We further identified the allelochemicals and found that 4-tert-butylpyrocatechol (TBC) was the main active ingredient that could inhibit the growth of M. flos-aquae. When the dose of TBC was larger than 0.2 mg/L, almost all of the M. flos-aquae died. Additionally, TBC was found to suppress the growth of M. flos-aquae by disturbing the synthesis and secretion of proteins and polysaccharides and harming the chlorophyll to affect the light harvesting of algal cells. Therefore, TBC has the potential for use as a potential and promising algaecide to restrain the biomass of M. flos-aquae.


Subject(s)
Microcystis/drug effects , Microcystis/growth & development , Pheromones/pharmacology , Scenedesmus/physiology , Catechols/pharmacology , Chlorophyll/metabolism , Coculture Techniques , Eutrophication/drug effects , Herbicides/pharmacology , Superoxide Dismutase
12.
Environ Toxicol Pharmacol ; 68: 94-100, 2019 May.
Article in English | MEDLINE | ID: mdl-30878719

ABSTRACT

The joint toxicity of chemicals mixture in the aquatic environment was still not well clear. To clarify the joint toxicity of the mixtures of metals and organic pollutants, as well as the influence of dissolved organic matter (DOM) in field water-body on their toxic effects, we conducted the toxicity tests with cadmium (Cd) and sodium dodecyl benzene sulfonate (SDBS) on Scenedesmus obliquus (S. obliquus) with or without the presence of fulvic acid (FA), a typical of DOM. Our results showed Cd was more toxic to S. obliquus than SDBS, and the effects of fulvic acid on SDBS were greater than Cd. The joint toxicity of Cd and SDBS expressed a synergistic effect on S. obliquus, which was observed to be increased with the presence of FA. Our results gave an example for the joint toxicity investigations of organics and metals, aiding to understanding the toxicity of pollutant mixtures in field water bodies containing DOM.


Subject(s)
Benzenesulfonates/toxicity , Benzopyrans/toxicity , Cadmium/toxicity , Humic Substances/toxicity , Scenedesmus/drug effects , Water Pollutants, Chemical/toxicity , Scenedesmus/physiology
13.
PLoS One ; 14(3): e0213370, 2019.
Article in English | MEDLINE | ID: mdl-30861041

ABSTRACT

Algicidal bacteria have received broad acceptance as an ecofriendly tool for controlling harmful algal blooms. However, their practical application is still limited to the lab-scale tests due to the complex alga-bacterium interactions in different nutrient statuses. In this study, the Aeromonas sp. L23 that exhibit relatively wide-spectrum in algicidal activity was isolated from a eutrophic agricultural lake. The physiological response of cyanobacteria and green to the algicidal activity under varied nutritional status were studied in an alga-bacterial co-culture. The algicidal activities of L23 against Microcystis aeruginosa UTEX LB 2385, Microcystis aeruginosa NHSB, Anabaena variabilis AG10064, Scenedesmus quadricauda AG10003, and Chlorella vulgaris AG10034 were 88 ± 1.2%, 94 ± 2.6%, 93 ± 0.5%, 82 ± 1.1%, and 47 ± 0.9%, respectively. The L23 cells had low algicidal activity in cell pellet (3%-9%) compared with the cell-free supernatant (78%-93%), indicating that the activity is induced by extracellular substances. Adding glucose, NaNO3, NH4Cl, and KH2PO4 to the co-culture raised the algicidal activity of the L23 against green algae by 5%-50%. Conversely, a 10%-20% decrease in activity occurred against the target cyanobacteria except M. aeruginosa UTEX LB 2385. These results indicated that the interspecific algicidal activity changes according to the nutritional status, which means that the alga-bacterium interaction will be more complex in the field where the nutritional status changes from time to time.


Subject(s)
Aeromonas/physiology , Antibiosis/physiology , Harmful Algal Bloom/physiology , Aeromonas/classification , Aeromonas/genetics , Anabaena variabilis/physiology , Antioxidants/metabolism , Chlorella vulgaris/physiology , Culture Media , Herbicides/metabolism , Lakes/microbiology , Microcystis/physiology , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Scenedesmus/physiology
14.
Water Environ Res ; 91(8): 679-688, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30844098

ABSTRACT

To investigate the effects of different microalgae and culture methods on the purification of domestic wastewater and biogas, Chlorella vulgaris and Scenedesmus obliquus were selected. Three different culture methods (monoculture, microalgal-fungi cocultivation, and microalgal-activated sludge cocultivation) were used to remove nutrients from four different domestic wastewaters and remove CO2 from raw biogas in a photobioreactor. The results show that the effluent from the centrate of pretreated urban wastewater (WW4) achieved the highest nutrient and CO2 removal efficiency. Cocultivation of C. vulgaris and activated sludge achieved the highest COD, TP, and CO2 removal efficiencies of 79.27%, 81.25%, and 60.39% with WW4, respectively. Cocultivation of C. vulgaris and fungi achieved the highest TN removal efficiency of 78.46% with WW4. The contents of C, N, and P in the microalgal-activated sludge symbiont after treatment exceeded 50%, 8%, and 0.8%, respectively. Highly economically efficient energy consumption was achieved with WW4 for both C. vulgaris and S. obliquus. Microalgal-activated sludge cocultivation was identified as the optimal option for the simultaneous purification of wastewater and biogas based on its high pollution and CO2 removal efficiency. This provides a reference for the microalgal-based purification of actual domestic wastewater and raw biogas. PRACTITIONER POINTS: Nutrient and CO2 were efficiently removed by C. vulgaris with activated sludge. CO2 was removed up to 60.4% and was economically viable. Cocultivation of C. vulgaris and fungi could achieve the highest TN removal with WW4.


Subject(s)
Biofuels , Chlorella/physiology , Photobioreactors , Scenedesmus/physiology , Water Purification , Coculture Techniques
15.
Bioprocess Biosyst Eng ; 42(4): 521-528, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30523448

ABSTRACT

In this work, a photobioreactor with microalgae biofilm was proposed to enhance CO2 biofixation and protein production using nickel foam with the modified surface as the carrier for immobilizing microalgae cells. The results demonstrated that, compared with microalgae suspension, microalgae biofilm lowered mass transfer resistance and promoted mass transfer efficiency of CO2 from the bubbles into the immobilized microalgae cells, enhancing CO2 biofixation and protein production. Moreover, parametric studies on the performance of the photobioreactor with microalgae biofilm were also conducted. The results showed that the photobioreactor with microalgae biofilm yielded a good performance with the CO2 biofixation rate of 4465.6 µmol m-3 s-1, the protein concentration of effluent liquid of 0.892 g L-1, and the protein synthesis rate of 43.11 g m-3 h-1. This work will be conducive to the optimization design of microalgae culture system for improving the performance of the photobioreactor.


Subject(s)
Biofilms/growth & development , Carbon Dioxide/metabolism , Microalgae/physiology , Nickel/chemistry , Plant Proteins/biosynthesis , Scenedesmus/physiology , Membrane Proteins , Photobioreactors
16.
Sci Total Environ ; 651(Pt 1): 570-579, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30245413

ABSTRACT

Ionic liquids (ILs) are widely used in various industrial applications. However, they are considered potential toxins in aquatic environments because of their physical stability and solubility. The growth inhibition and oxidative stress induced by four ionic liquids with different cations and anions on the green algae Scenedesmus obliquus was investigated in this study. The order of growth inhibition was 1­hexyl­3­methylimidazolium nitrate ([HMIM]NO3) > 1­hexyl­3­methylimidazolium chloride ([HMIM]Cl) > N­hexyl­3­metylpyridinium bromide ([HMPy]Br) > N­hexyl­3­metylpyridinium chloride ([HMPy]Cl). Imidazolium IL had a higher growth inhibition effect than pyridinium IL, nitrate IL and bromide IL had a higher effect than chloride IL. Reactive oxygen species (ROS) level in S. obliquus increased with increasing IL concentrations. Green fluorescence in [HMIM]Cl treated algae showed increased brightness compared to the [HMPy]Cl treatment, and [HMIM]NO3 treatment produced increased brightness compared to the [HMPy]Br treatment, suggesting that higher ROS levels were induced by [HMIM]Cl and [HMIM]NO3. Soluble protein, catalase (CAT), and superoxide dismutase (SOD) activities were stimulated at lower concentrations but were inhibited at higher concentrations. Regression analysis suggested that ROS level is the main index responsible for oxidative stress induced by the four ILs. The ILs induced oxidative damage on S. obliquus, and ROS in high concentration treatments could not be effectively removed by the antioxidant system, leading to oxidative damage and ultimately resulting in growth inhibition and cell death.


Subject(s)
Ionic Liquids/adverse effects , Oxidative Stress/drug effects , Scenedesmus/drug effects , Water Pollutants, Chemical/adverse effects , Anions/metabolism , Cations/metabolism , Reactive Oxygen Species/metabolism , Scenedesmus/growth & development , Scenedesmus/physiology
17.
Sci Total Environ ; 650(Pt 1): 1239-1249, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30308812

ABSTRACT

The flame retardant triphenyl phosphate (TPhP) has been widely detected in surface waters. Yet, little information is known regarding its impact on microalgae. We investigated the uptake and toxicity of TPhP on two freshwater microalgae Chlorella vulgaris (CV) and Scenedesmus obliquus (SO) after exposure to 10 µg/l-10 mg/l for 5 days. The presence of microalgae significantly enhanced TPhP degradation, with the final concentrations dropped to 5.5-35.1% of the original concentrations. Most of the medium TPhP were sorbed and transformed by microalgae in just one day. Growth of CV was inhibited in a concentration-dependent manner, whereas growth of SO were only inhibited significantly at 10 mg/l TPhP exposure. Mass spectrometry-based untargeted metabolomics revealed concentration- and species-dependent metabolic responses. Exposure to TPhP in CV resulted in enhanced respiration (increase of fumarate and malate) and osmoregulation (increase of sucrose and myo-inositol), synthesis of membrane lipids (accumulation of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), decrease of lysoglycerolipids, fatty acids, and glyceryl-glucoside). Exposure to TPhP in SO resulted in enhanced osmoregulation (increase of valine, proline, and raffinose) and lipolysis (decrease of MGDG, accumulation of fatty acids, lysophospholipids, and glycerol phosphate). Although chlorophyll a and b contents did not change significantly, decrease of chlorophyll derivatives was observed in both CV and SO at high exposure concentrations. Further bioassays confirmed that CV exhibited enhanced membrane integrity and decreased cellular reactive oxygen species (ROS) possibly as a defense strategy, whereas SO showed disruption of membrane integrity and induction of ROS at 10 mg/l exposure. This study demonstrated the potential of microalgae to remove TPhP in water, and offered new insights for the risk assessment of TPhP on freshwater microalgae using metabolomics.


Subject(s)
Chlorella vulgaris/drug effects , Flame Retardants/toxicity , Organophosphates/toxicity , Scenedesmus/drug effects , Water Pollutants, Chemical/toxicity , Chlorella vulgaris/physiology , Flame Retardants/metabolism , Metabolome/drug effects , Metabolomics , Organophosphates/metabolism , Scenedesmus/physiology , Water Pollutants, Chemical/metabolism
18.
Sci Total Environ ; 653: 485-495, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30414578

ABSTRACT

In this work, a strategy based on photo-sequencing batch operation was used to select cyanobacteria over unsettled green algae in a wastewater treatment system, evaluating for the first time the effect of hydraulic regimes on nutritional dynamics and microorganisms' competition. During 30 days of operation, an initial microalgae mixed consortia dominated by the green microalgae Scenedesmus sp. was cultivated in two different photo-sequencing batch reactors operated at hydraulic retention time (HRT) of 6 days (PSBR6) and 4 days (PSBR4) at a theoretical solids retention time (SRT) of 10 d. Both reactors were compared with a semi-continuous reactor (SC10) operated at 10 d of HRT and 10 days of SRT (used as a control). The results indicated that PSBR6 and PSBR4 decreased Scenedesmus sp. population by 88% and 48%, respectively. However, only PSBR6 provided suitable conditions to select cyanobacteria from an initial green algae dominated culture. These conditions included volumetric loads of 11.72 mg TN L-1 d-1, 2.04 mg TP L-1 d-1 and 53.31 mg TOC L-1 d-1. The remaining nutrients in the culture led also to a phosphorus limiting N:P ratio (34:1) that improved the increase of cyanobacteria from an initial 2% until 70% of the total population. In addition, PSBR6 reached a biomass production of 0.12 g L-1 d-1, while removing TN, TP and TOC by 58%, 83% and 85%, respectively. Conversely, the application of higher nutrients loads caused by lower HRT (PSBR4) led to an increase of only 13% of cyanobacteria while SC10 remained with the same biomass composition during all the experimental time. Thus, this study showed that the dominance of cyanobacteria in microalgal-based wastewater treatment systems can be controlled by the operational and nutritional conditions. This knowledge could contribute to control microalgae contamination from up-scaling cyanobacterial biomass production in wastewater treatment systems.


Subject(s)
Bioreactors/microbiology , Cyanobacteria/physiology , Scenedesmus/physiology , Waste Disposal, Fluid/methods , Wastewater/analysis , Microalgae/physiology , Microbial Consortia/physiology
19.
Langmuir ; 35(9): 3524-3533, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30580526

ABSTRACT

Cell adhesion is ubiquitous and plays an important role in various scientific and engineering problems. Herein, a quantitative criterion to predict cell adhesion was proposed by identifying the dominant interaction between microorganisms and abiotic surfaces. According to the criterion, the dominant interaction in cell adhesion could be identified as a Lewis acid-base (AB) interaction or electrostatic (EL) interaction via comparison of two expressions containing the electron-donor characteristics of the microorganism (γmv-) and abiotic surface (γsv-) and their ζ potentials (ζm, ζs). The results revealed that when dominated by the AB interaction, adhesion would decrease with increasing [Formula: see text]. However, when the EL interaction was dominant, adhesion would decrease with increasing (ζm + ζs)2. We have verified the criterion based on the adhesion of microalgae, bacteria, and fungi onto various surfaces obtained via our experiments and available in literature studies. The results demonstrated that the criterion had important implications in the prediction of cell adhesion in various applications.


Subject(s)
Bacterial Adhesion/physiology , Cell Adhesion/physiology , Models, Biological , Chlorella/physiology , Enterococcus faecalis/physiology , Lewis Acids/chemistry , Lewis Bases/chemistry , Scenedesmus/physiology , Staphylococcus epidermidis/physiology , Static Electricity , Stramenopiles/physiology , Surface Properties
20.
Sci Rep ; 8(1): 16420, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30401886

ABSTRACT

Phosphorus stress was applied to enhance the lipid production in Scenedesmus sp. The highest lipid production (350 mg L-1) and lipid content (approximately 41.0% of dry weight) were obtained by addition of 2 mg L-1 NaH2PO4·2H2O every 2 days, which were higher than those in replete phosphorus. Correspondingly, carbohydrate content decreased significantly. We speculated that phosphorus limitation could block starch biosynthesis, and photosynthate flow tended to fatty acid biosynthesis to cope with stress. To investigate the mechanism that phosphorus stress triggers the carbon fixation to lipid biosynthesis, the transcriptome analysis was carried out by the Illumina RNA-seq platform. A total of 2897 genes were identified as differentially expressed genes. The observed overexpression of lipid production under phosphorus stress was bolstered by up-regulation of genes encoding for DGAT and pyruvate kinase, activation of carbohydrate metabolism pathway and fatty acid biosynthesis, and repression of carbohydrate synthesis-presumably to shunt the carbon flux toward TAG biosynthesis. The transcriptome will be useful to understand the lipid metabolism pathway and obtain the engineering economic algae species aimed at biodiesel production.


Subject(s)
Gene Expression Profiling , Phosphorus/deficiency , Scenedesmus/genetics , Scenedesmus/metabolism , Lipid Metabolism/genetics , Scenedesmus/physiology , Starch/biosynthesis , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...